
ELECTROMAGNETIC FIELD THEORY 

Unit – I 

 

Objectives: 

➢ To introduce the concepts of Electrostatics and Magneto statics. 

 

 

Syllabus: 

Basic Concepts: Coulomb’s Law, Electric field intensity, Electric fields due to 

Point Charge, line charge, surface charge and volume charge distributions, 

Electric Flux Density, Gauss’s law, Applications of Gauss law: Point Charge, 

Infinite Line Charge. 

 

Outcomes: 

Students will be able to 

➢ Understand basic law on point charges. 

➢ Calculate the electric fields due to different charge distributions. 

➢ Understand  Gauss law and its applications. 

➢ Gauss law on different charge configurations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

INTRODUCTION: 
 

Electrostatics can be defined as the study of electric charges at rest. 

Electric fields have their sources in electric charges.(Note: Almost all real 

electric fields vary to some extent with time. However, for many problems, 

the field variation is slow and the field may be considered as static. For 

some other cases spatial distribution is nearly same as for the static case 

even though the actual field may vary with time. Such cases are termed as 

quasi-static.) 

In this chapter we first study two fundamental laws governing the 

electrostatic fields, viz, (1) Coulomb's Law and (2) Gauss's Law. Both these 

law have experimental basis. Coulomb's law is applicable in finding electric 

field due to any charge distribution, Gauss's law is easier to use when the 

distribution is symmetrical. 

COULOMB'S  LAW: 
 

Coulomb's Law states that the force between two point charges Q1and 

Q2 is directly proportional to the product of the charges and inversely 

proportional to the square of the distance between them. 

Point charge is a hypothetical charge located at a single point in space. 

It is an idealized model of a particle having an electric charge. 

Mathematically,  , where k is the proportionality 

constant.
 

 

 
 

In SI units, Q1 and Q2 are expressed in Coulombs(C) and R is in meters. 
 

Force F is in   Newtons (N)  and   ,        is called the permittivity 

of free space. 
 

 
 



(We are assuming the charges are in free space. If the charges are any other 
dielectric 



 

 

 

 

 

 

medium, we will use ε= ε0εr instead ε0 where εr is called the relative 

permittivity or the dielectric constant of the medium). 

 

 

Therefore   ....................... (1) 
 

 
 

As shown in the Figure 1 let the position vectors of the point charges Q1and 
Q2 are given by r1 and r2. 

 

 Let F12 represent the force on Q1 due to charge Q2. 
 
 
 

 
 

Fig. 1: Coulomb's 

Law 

 

The charges are separated by a distance of  . We define the unit 

vectors as 

 
  

 

 

 

 
 

and    can be defined as  F12  

             

                       

.........................(2)                        

 

calculated and if   represents Similarly the force on Q
1  

due to charge Q
2  

can be 

this force then we can write   
 



 

When we have a number of point charges, to determine the force on a particular 

charge due to all other charges, we apply principle of superposition. If we have 

N number of charges Q1,Q2,.........QN located respectively at the points 

represented by the position vectors   , ,......  , the force experienced by a 

charge Q located at  is given by, 

 .................................(3)
 

Limitations of Coulomb's Law: 

• It is only applicable for point charges at rest. 

• It is only applicable in dose cases where inverse square law is obeyed. 

• It is difficult to apply the Coulomb’s law when the charges are in 

arbitrary shape. Hence, we cannot determine the value of distance ‘d’ 

between the charges when they are in arbitrary shape. 

Applications of lines-of-force model 

a) Dipole 

The electric field line between two charges can be calculated 

using coulombs law of force. 

 

b)  Electric field between parallel plate capacitor . 

 

 



 

 

 

 

 

 

 

 

ELECTRIC FIELD  
 
The electric field intensity or the electric field strength at a point is defined as 

the force per unit charge. That is 
 

 or,  .......................................(4) 

 

The electric field intensity E at a point r (observation point) due a point charge 

Q located at  (source point) is given by: 

 ..........................................(5) 
 

 
For a collection of N point charges Q1 ,Q2 ,.........QN located at r1, r2………rN 

the electric field intensity at point  is obtained as 
 

 ........................................(6)
 

 

The expression (6) can be modified suitably to compute the electric filed 
due to a continuous distribution of charges. 

In figure 2 we consider a continuous volume distribution of charge (t) in 
the region denoted as the source region. 

 

For an elementary charge  , i.e. considering this charge as point 
charge, 
 

we can write the field expression as: 
    

                  

 
                                                                           .............(7) 

 
 

Fig. 2: Continuous Volume Distribution of Charge 
 
When this expression is integrated over the source region, we get the electric 

field at the point P due to this distribution of charges. Thus the expression for 



the electric field at P can be written as: 

 

 ..........................................(8)
 

 

Similar technique can be adopted when the charge distribution is in the form 

of a line charge density or a surface charge density. 

 .......................................(9) 

 ....................................(10) 

Electric Fields due to Point Charge 
➢ The electric field intensity due to a point charge is given by  

………………………….(11) 

 
Electric Fields due to Line Charge 
 

 

As a special case, for an infinite line charge, point B is at (0, 0, α) and A at (0, 0, 

-α), so that α1 = π/2, α2 = -π/2; the z-component vanishes and becomes 

………………………….(13) 

Electric Fields due to Surface Charge 

➢ Consider a line charge with uniform charge density pL extending from A to B along the z-

axis as shown in Figure. The charge element dQ associated with element dl = dz of the line 

is 

                   
➢ The total charge Q is 

                                      
➢ for a finite line charge 

 

     
                                                                                                   ……………………….(12) 

 



 

➢  
➢ the total charge in a sphere of radius a is  

                            
➢ The electric field intensity due to a volume 

charge is given by  

………………………….(15) 

 

 

 

➢ Consider an infinite sheet of charge in the xy-plane with uniform charge 

density ps. The              charge associated with an elemental area dS  and   

the total charge are  

                               

                          dQ = ρs dS 

   
 

 

 

 

 

Fig.2a: Electric field intensity due to surface charge 

➢ E has only z-component if the charge is in the xy-plane. Electric Fields 

due to Surface Charge is 

………………………….(14) 

 

Electric Fields due to Volume Charge 

➢ Let the volume charge distribution with uniform charge density v. The 

charge dQ associated with the elemental volume dv is 

dQ = ρv dv 

 

     

          

Fig. 2b: E due to volume charge 

 

 

 

 

 



 

 

ELECTRIC FLUX DENSITY: 
 

As stated earlier electric field intensity or simply ‘Electric field' gives the 

strength of the field at a particular point. The electric field depends on the 

material media in which the field is being considered. The flux density vector is 

defined to be independent of the 

material media (as we'll see that it relates to the charge that is producing 

it).For a linear isotropic medium under consideration; the flux density vector is 

defined as:  

D= ε0E 

We define the electric flux  as  

 

 

Electric flux lines: 
1. These are imaginary lines which shows pictorial influence of electric 
field intensity in space. 

2. These are always emitted from positive charge and enter in negative 
charge. 
3. They don’t form closed loops. 

4. These are always perpendicular to charge surface. 
5. These lines never intersect with each other. 

 

GAUSS'S LAW: Gauss's law is one of the fundamental laws of 

electromagnetism and it states that the total electric flux through a closed 

surface is equal to the total charge enclosed by the surface. 

 

 
Fig. 3: Gauss's 

Law 
 
Let us consider a point charge Q located in an isotropic homogeneous medium 

of dielectric constant . The flux density at a distance r on a surface enclosing 

the charge is given by 



 
 

 

.....................................(18) 

 

If we consider an elementary area ds, the amount of flux passing 

through the elementary area is given by 

 

 .....................................(19) 
 

Therefore we can write  

For a closed surface enclosing the charge, we can write  

 

which can seen to be same as what we have stated in the definition of Gauss's 
Law. 

 
 

APPLICATION OF GAUSS'S LAW: 
 

useful in computing  or  where the Gauss's law is particularly 

charge distribution has some symmetry. We shall illustrate the application 

of Gauss's Law with some examples. 

1. An infinite line charge 
 

As the first example of illustration of use of Gauss's law, let consider the 

problem of determination of the electric field produced by an infinite line charge 

of density  ρ
L
C/m. Let us consider a line charge positioned along the z-axis as 

shown in Figure. Since the line charge is assumed to be infinitely long, the 

electric field will be of the form as shown in Figure. 

 

If we consider a close cylindrical surface as shown in Figure , using Gauss's 

theorm we can write, 

 

 .....................................(20) 

 

Considering the fact that the unit normal vector to areas S1 and S3 are 

perpendicular to the electric field, the surface integrals for the top and bottom 

surfaces evaluates to zero. 



Hence we can write,   



 

 

 
 

 
 

 
 

Fig 4: Infinite Line Charge 
 
 
 

 

.....................................(21) 
 

2.  Infinite  Sheet of Charge 
 
As a second example of application of Gauss's theorem, we consider an infinite 

charged sheet covering the x-z plane as shown in figure 5. Assuming a surface 

charge density of 

 for the infinite surface charge, if we consider a cylindrical volume 

having sides placed symmetrically as shown in figure 5, we can write: 

 

  ..............(22) 



 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Infinite  Sheet of Charge 
 

It may be noted that the electric field strength is independent of distance. This 

is true for the infinite plane of charge; electric lines of force on either side of the 

charge will be perpendicular to the sheet and extend to infinity as parallel lines. 

As number of lines of force per unit area gives the strength of the field, the field 

becomes independent of distance. For a finite charge sheet, the field will be a 

function of distance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

UNIT-2 

Syllabus: 

 UNIT – II: Electrostatics-II 

Energy expended in moving a point charge in an electric field, Electric Potential difference 

and Potential, Potential due to different charge configurations, Potential gradient, Electric dipole 

and Energy density in electrostatic field. Conduction and Convection Current, Current density. 

 

Outcomes: 

Students will be able to 

➢ Understand the energy expended in moving a point charge in an electric field 

➢ Calculate the electric potential between two points 

➢ Differentiate conduction and convection currents. 

 

 

Energy expended in moving a point charge in an electric field: 
 
In the previous sections we have seen how the electric field intensity due to a 

charge or a charge distribution can be found using Coulomb's law or Gauss's 

law. Since a charge placed in the vicinity of another charge (or in other words in 

the field of other charge) experiences a force, the movement of the charge 

represents energy exchange. Electrostatic potential is related to the work done 

in carrying a charge from one point to the other in the presence of an electric 

field. Let us suppose that we wish to move a positive test charge  from a point P 

to another point Q as shown in the Fig. 8.The force at any point along its path 

would cause the particle to accelerate and move it out of the region if 

unconstrained. Since we are dealing with an electrostatic case, a force equal to 

the negative of that acting on the charge is to be applied while     moves from 

P to Q. The work done by this external agent in moving the charge by a distance  

 is given by: 

 

 ............................. (1) 

 



 

 
Fig.: Movement of Test Charge in Electric Field 

 
 
 

The negative sign accounts for the fact that work is done on the system by the 

external agent. 

 ..................................... (2) 
 

The potential difference between two points P and Q , VPQ, is defined as 

the work done per unit charge, i.e. 

 ............................... (3) 
 

It may be noted that in moving a charge from the initial point to the final point 

if the potential difference is positive, there is a gain in potential energy in the 

movement, external agent performs the work against the field. If the sign of 

the potential difference is negative, work is done by the field. 

 

We will see that the electrostatic system is conservative in that no net energy is 

exchanged if the test charge is moved about a closed path, i.e. returning to its 

initial position. Further, the potential difference between two points in an 

electrostatic field is a point function; it is independent of the path taken. The 

potential difference is measured in Joules/Coulomb which is referred to as 

Volts. 

Let us consider a point charge Q as shown in the Figure. 
 



 
 
 
 

Figure: Electrostatic Potential calculation for a point charge 
 

Further consider the two points A and B as shown in the Figure. Considering 

the movement of a unit positive test charge from B to A , we can write an 

expression for the potential difference as: 

 ...................(4) 
 

It is customary to choose the potential to be zero at infinity. Thus potential at 

any point ( rA = r) due to a point charge Q can be written as the amount of 

work done in bringing a unit positive charge from infinity to that point (i.e. rB = 

0). 

 .................................. (5) 
 

Or, in other 
words, 

 

 ..................................(6) 
 
Let us now consider a situation where the point charge Q is not located at the 

origin as shown in Fig. 3. 



 
 

 
 

Fig. 3: Electrostatic Potential due a Displaced 
Charge 

 
The potential at a point P 
becomes 

 

................................(7) 
 
So far we have considered the potential due to point charges only. As any other 

type of charge distribution can be considered to be consisting of point charges, 

the same basic ideas now can be extended to other types of charge distribution 

also. Let us first consider N point charges 

 Q1, Q2 ,..... QN located at points with position vectors   

 , ,.......  . The potential at a point having position vector can be written 

as: 

 
 
 
 

............................... (8) 

OR 

 ...................................(9) 
 

 

Potential due to different Charge distributions:- 
For continuous charge distribution, we replace point charges by corresponding 

 

charge elements   or    or     depending on whether the charge 

distribution is linear, surface or a volume charge distribution and the 

summation is replaced by an integral 

With these modifications we can write: 



 

For line charge, …………………(10) 

For surface charge,  ...........................(11)  

For volume charge,  ......................... (12) 
 
 
 

It may be noted here that the primed coordinates represent the source 

coordinates and the unprimed coordinates represent field point. 

Further, in our discussion so far we have used the reference or zero potential 

at infinity. If any other point is chosen as reference, we can write: 

 .................................(13) 

 

where C is a constant. In the same manner when potential is computed from 

a known electric field we can write: 

 ……………….. (14) 
 
The potential difference is however independent of the choice of reference. 

 
 
 

 .......................(15) 

We have mentioned that electrostatic field is a conservative field; the work 

done in moving a charge from one point to the other is independent of the 

path. Let us consider moving a charge from point P1 to P2 in one path and 

then from point P2 back to P1 over a different path. If the work done on the 

two paths were different, a net positive or negative amount of work would have 

been done when the body returns to its original position P1. In a conservative 

field there is no mechanism for dissipating energy corresponding to any 

positive work neither any source is present from which energy could be 

absorbed in the case of negative work. Hence the question of different works in 

two paths is untenable, the work must have to be independent of path and 



 
 

 
 

depends on the initial and final positions. 

Potential Gradient:- 

Since the potential difference is independent of the paths taken, VAB = - VBA , 

and over a closed path, 

    .................................(16)  

 

Applying Stokes's theorem, we can write: 
 

 ............................ (17) 
 
from which it follows that for electrostatic field, 

 

 ......................(18) 

Any vector field that satisfies is called an 

irrotational field. From our definition of potential, 

we can write  
 
 
 

 
 

  
 
 
 
from which we obtain, 

.................................(19) 

 

.......................................... (20) 



From the foregoing discussions we observe that the electric field strength at 

any point is the negative of the potential gradient at any point, negative sign 

shows that  is directed from higher to lower values of   . This gives us 

another method of computing the electric field , i. e. if we know the potential 

function, the electric field may be computed. We may note here that that one 

scalar function  contain all the information that three components of   

carry, the same is possible because of the fact that three components of  are 

interrelated by the relation  . 

 

Equipotential Surfaces 
 

An equipotential surface refers to a surface where the potential is 

constant. The intersection of an equipotential surface with an plane surface 

results into a path called an equipotential line. No work is done in moving a 

charge from one point to the other along an equipotential line or surface. 

In figure 4, the dashes lines show the equipotential lines for a positive point 

charge. By symmetry, the equipotential surfaces are spherical surfaces and 

the equipotential lines are circles. The solid lines show the flux lines or 

electric lines of force. 

 
 
 

 
 
 
 

Fig.4: Equipotential Lines for a Positive Point Charge 

  
 
 



Michael Faraday as a way of visualizing electric fields introduced flux lines. 

It may be seen that the electric flux lines and the equipotential lines are 

normal to each other. In order to plot the equipotential lines for an electric 

dipole, we observe that for a given Q and d, a constant V requires that  

 is a constant. From this we can write 

 

 

  to be the equation for an equipotential surface and a family of 

surfaces can be generated for various values of cv.When plotted in 2-D this 

would give equipotential 

lin
es. 

 
To determine the equation for the electric field lines, we note that field lines 

represent the direction of    in space. Therefore, 

 , where k is a constant 

.............................................(21) 
 

  
.................(22) 

 

For the dipole under consideration  =0 , and therefore we 

can write, 
 

  ........................... (23) 

Electric Dipole 

➢ An electric dipole is formed when two point charges of equal magnitude 

but opposite 

sign are separated by a small distance. 



 
➢ The potential at point P(r,θ ,ø) is given by 

 

 

 

 
 

 
Electrostatic Energy and Energy 

Density: 
 
We have stated that the electric potential at a point in an electric field is the 

amount of work required to bring a unit positive charge from infinity 

(reference of zero potential) to that point. To determine the energy that is 

present in an assembly of charges, let us first determine the amount of work 

required to assemble them. Let us consider a number of discrete charges Q1, 

Q2,......., QN are brought from infinity to their present position one by one. 

Since initially there is no field present, the amount of work done in bring Q1 

is zero. Q2 is brought in the presence of the field of Q1, the work done W1= 

Q2V21 where V21 is the potential at the location of Q2 due to Q1. Proceeding 

in this manner, we can 

write, the total work done  

 ....................(24) 
 
Had the charges been brought in the reverse 
order, 

 
 

................(25)       

 

 

 



 
 

 
 

 

 

 

 

 

 

Therefore, 

..
......(26
) 

Here Vij represent voltage at the Ith charge location due to Jth charge. 
Therefore, 

 

 Or,  ................(27) 
 
If instead of discrete charges, we now have a distribution of charges over a 

volume v 
 

then we can write,  ................(28) 
 

where    is the volume charge density and V represents the potential 

function. 
 
 

Since,                  , we can write 
 

  .......................................(29) 

 
 
 
, we can write 
 
 
 

 

Using the 
vector identity, 

 

 

 

 

 

 

 

                        
------------------

--------(30) 



 

  

 

 
 

 
 
 
  
  

In the expression                       , for point charges, since V varies as  1/r  and  

 

D varies as 1/r2 , the term  V varies as 1/r3 . 

 

Thus the equation for W reduces to 
 

  ...........(31) 

 , is called the energy density in the electrostatic 

field. Poisson’s and Laplace’s Equations 

For electrostatic field, we have seen that 
 

 ...................................................(32) 

Form the above two equations we can write 
 

 ................................................(33) 
 
 
 

Using vector identity we can write,  

 

                                    ................(34) 
 
 

For a simple homogeneous medium,     is constant and             .        
Therefore, 

 

 ................(35) 
 
This equation is known as Poisson’s equation. Here we have introduced a new 
operator 

 

 , ( del square), called the Laplacian operator. In Cartesian coordinates, 
 

 ...............(36) 

Therefore, in Cartesian coordinates, Poisson equation can be 

written as: 
 

..............(37)  



 
 

 
 

 

In cylindrical coordinates, 
 
 
 

 
 
In spherical polar coordinate system, 

 

 ...............(38) 
 
At points in simple media, where no free charge is present, Poisson’s equation 
reduces to 

                 ---------------(39) 
 
 
Which is known as Laplace Equation. 

  
 
Laplace’s and Poisson’s equation are very useful for solving many practical 

electrostatic field problems where only the electrostatic conditions (potential 

and charge) at some boundaries are known and solution of electric field and 

potential is to be found hroughout the volume. We shall consider such 

applications in the section where we deal with boundary value problems. 

 

 

  

 



Convection and conduction current:                                                              
➢ The current (in amperes) through a given area is the electric charge 

passing through the area per unit time. 

  ----------------(40) 

➢ We now introduce the concept of current density J. If current I flows 

through a surface S, the current density is 

 ---------------(41)  

The current density is assumed to be perpendicular to the surface. 

If the current density is not normal to the surface, then 

ΔI=Jn Δs-------------(42) 

 

 -----------------(43) 

 ---------------------(44)  

Depending on how I is produced, there are different kinds of current densities 

such as, 

✓ Convection current density 

✓ Conduction current Density 

✓ Displacement Current Density 

  

Convection Current Density: 

• Convection current, which is different from conduction current, does 

not involve conductors and consequently does not satisfy Ohm’s 

Law. 

• This type of current occurs when current flows through an 

insulating medium such as liquid, rarefied gas or a vacuum. 

• For example a beam of electrons in a vacuum tube can be considered 

as convection current.  

• Consider a filament as shown in figure below. 



 
➢ The current density m a given point is the current through a unit normal 

area at that point. 

 
➢ I is the convection current 

➢ The conduction current is 

 

………………………(45) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIT-3 

ELECTROSTATICS-III 

 

Objectives: 

➢ To introduce the conductance, boundary conditions, capacitance 

and Solution to Laplace’s equation. 

 

Syllabus: 

 

UNIT – III: Electrostatics-III 

Conductor properties, Polarization in Dielectrics, Boundary conditions for 

Dielectric – Dielectric and Conductor - Dielectric Interfaces, Capacitance - 

Parallel Plate, Coaxial and Spherical Capacitors, Poisson’s and Laplace’s 

equations, Examples of the solution of Laplace’s equation (Direct Integration 

Method for One dimensional Potential Variation Problems). 

 

 

Outcomes: 

Students will be able to 

➢ Understand polarization. 

➢ Derive the boundary conditions at different interfaces.. 

➢ Understand  parallel plate, coaxial and spherical capacitance working. 

➢ Solve the laplace’s equation. 

 

 

 

 

 

 

 

 

 

Continuity Equation and Relaxation Time  



 

Let us consider a volume V bounded by a surface S. A net charge Q exists 

within this region. If a net current I flows across the surface out of this region, 

from the principle of conservation of charge this current can be equated to the 

time rate of decrease of charge within this volume. Similarly, if a net current 

flows into the region, the charge in the volume must increase at a rate equal to 

the current. Thus we can write, 

   
 

or,     

Applying divergence theorem we can 

write, 
 

    

It may be noted that, since   in general may be a function of space and time, 

partial derivatives are used. Further, the equation holds regardless of the 

choice of volume V , the integrands must 

be equal. 
 

Therefore we can write, 
 

  
The equation (48) is called the continuity equation, which relates the divergence 

of current density vector to the rate of change of charge density at a point. 

For steady current flowing in a region, we have 
 

 
 

Considering a region bounded by a closed surface, 
 

  
 

which can be written as, 
 

  
 

when we consider the close surface essentially encloses a junction of an 

electrical circuit. 
 

  which is called the continuity of current equation 



 

 
 

➢ The time constant Tr (in seconds) is known as the relaxation time or 

rearrangement time. 

➢ Relaxation time is the lime it takes u charge placed in the interior of a 

material to drop to e-1=  36.8 percent of its initial value. 

 

Conductor Properties: 

Materials are broadly classified in terms of their electrical properties as 

conductors and nonconductors.  Non conducting materials are usually referred 

to as insulators or dielectrics. 

Conductor Properties: 

In a broad sense, materials may be classified in terms of their conductivity  

σ, in mhos per meter (℧ /m) or Siemens per meter (S/m), as conductors and 

nonconductors, or technically as metals and insulators (or dielectrics). The 

conductivity of a material usually depends on temperature and frequency. A 

material with high conductivity (σ » 1) is referred to as a metal whereas one with 

low conductivity (σ << 1) is referred to as an insulator. A material whose 

conductivity lies somewhere between those of metals and insulators is called a 

semiconductor. 

A conductor has abundance of charge that is free to move. When an 

external electric field Ee is applied, the positive free charges are pushed along the 

same direction as the applied field, while the negative free charges move in the 

opposite direction. This charge migration takes place very quickly. The free 

charges do two things. First, they accumulate on the surface of the conductor 

and form an induced surface charge. Second, the induced charges set up an 

internal induced field E,, which cancels the externally applied field Ee.  

Note: A perfect conductor cannot contain an electrostatic field within it. 

A conductor is called an equipotential body, implying that the potential is the 

same everywhere in the conductor. This is based on the fact that E = - ∇V = 0. 

Another way of looking at this is to consider Ohm's law, J = σ E. To 

maintain a finite current density J, in a perfect conductor (σ —> ∞), requires that 

the electric field inside the conductor must vanish. In other words, E —> 0 



because σ —> ∞ in a perfect conductor. If some charges are introduced in the 

interior of such a conductor, the charges will move to the surface and 

redistribute themselves quickly in such a manner that the field inside the 

conductor vanishes. According to Gauss's law, if E = 0, the charge density ρv 

must be zero.  

 

 

 
 

The conductor has a uniform cross section S and is of length l. The 

direction of the electric field E produced is the same as the direction of the flow of 

positive charges or current I. This direction is opposite to the direction of the flow 

of electrons. The electric field applied is uniform and its magnitude is given by 

E=V/ l 

Since the conductor has uniform cross section  J = I/S. 

And R=V/I . Therefore R= (ρc l) / S 



 
 

On solving  

 
And , 

 
 
Which is known as Joules law.  

 

 
 
Which is the common form of Joule’s law in electromagnetic theory. 

 
POLARIZATION IN DIELECTRICS: 

When an electric field E is applied, the positive charge is displaced from its 

equilibrium position in the direction of E by the force F+ = QE while the negative 

charge is displaced in the opposite direction by the force F_ = QE. A dipole 

results from the displacement of the charges and the dielectric is said to be 

polarized. In the polarized state, the electron cloud is distorted by the applied 

electric field E. This distorted charge distribution is equivalent, by the principle 



of superposition, to the original distribution plus a dipole whose moment is p = 

Qd dipole moment per unit volume of the dielectric is 

 

 

The electric field E on a dielectric is the creation of dipole moments that align 
themselves in the direction of E. This type of dielectric is said to be non-polar. 

 

Fig.: Polarization of a nonpolar atom or molecule. 

 

BOUNDARY CONDITIONS: 

If the field exists in a region consisting of two different media, the conditions that 

the field must satisfy at the interface separating the media are called boundary 

conditions. 

These conditions are helpful in determining the field on one side of the boundary 

if the field on the other side is known. Obviously, the conditions will be dictated 

by the types of material the media are made of. We shall consider the boundary 

conditions at an interface separating  



• dielectric (Єr1) and dielectric (Єr2) 

• conductor and dielectric 

• conductor and free space 

To determine the boundary conditions, we need to use Maxwell's equations: 

 

 
Also we need to decompose the electric field intensity E into two orthogonal 

components: 
E=Et+En 

where E, and En are, respectively, the tangential and normal components of E to 
the interface of interest. 
Dielectric-Dielectric Boundary Conditions: 

Consider the E field existing in a region consisting of two different 

dielectrics characterized by ε1= ε0 ε r1. E1 and E2 in media 1 and 2, respectively, 

can be decomposed as 

E1 = E1t + E1n  

E2 = E2t + E2n 

We apply to the closed path abcda assuming that the path is very small with 

respect to the variation of E. 

 

 
Thus the tangential components of E are the same on the two sides of the 

boundary In other words, E, undergoes no change on the boundary and it is said 

to be continuous across the boundary. Since D = εE = Dt + Dn, equation can be 

written as 



 
that is, D, undergoes some change across the interface. Hence D, is said to be 
discontinuous across the interface. 

 
Fig.: Dielectric-Dielectric Boundary 

 
Similarly, we can apply to the pillowbox (Gaussian Surface). Allowing Δh —> 0 

 
where ps is the free charge density placed deliberately at the boundary. The 

assumption is that D is directed from region 2 to region 1 and  must be applied 

accordingly. If no free charges exist at the interface (i.e., charges are not 

deliberately placed there), ps = 0.Then D1n=D2n. 

Thus the normal component of D is continuous across the interface; that 

is, Dn undergoes no change at the boundary. Since D = εE. Therefore, ε1E1n=ε2En. 

It shows that the normal components of E is discontinuous at the boundary. 



 
Fig.: Refraction of D and E at a Dielectric- dielectric boundary. 

 

On solving, 

 
This is the law of refraction of the electric field at  a boundary free charge. 

 

Conductor-Dielectric Boundary Conditions: 

 The conductor is assumed to be perfect (i.e.,  σ —> ∞ or ρc —> 0). Although such 

a conductor is not practically realizable, we may regard conductors such as 
copper and silver as though they were perfect conductors. 

 
Fig.: Conductor-Dielectric Boundary 

To determine the boundary conditions for a conductor-dielectric interface, 

we follow the same procedure used for dielectric-dielectric interface except that 

we incorporate the fact that     E = 0 inside the conductor. For the closed path 

abcda of Figure above gives 



 
As Δh->0 , Et=0 

Similarly, for the pillbox by letting Δh —> 0, we get 

 
On solving Dn=ρs. 

 
Conductor-Free Space Boundary Conditions: 

This is a special case of the conductor-dielectric conditions and is 

illustrated. The boundary conditions at the interface between a conductor and 

free space can be obtained BY replacing εr by 1 (because free space may be 

regarded as a special dielectric for which εr = 1). We expect the electric field E to 

be external to the conductor and normal to its surface. Thus the boundary 

conditions are 

 

 

           Fig.: Conductor – free space boundary 

 

 

 

CAPACITANCE AND CAPACITORS 
 
We have already stated that a conductor in an electrostatic field is an 

Equipotential body and any charge given to such conductor will distribute 

themselves in such a manner that electric field inside  the  conductor  vanishes.  

If  an  additional  amount  of  charge is supplied to an isolated conductor at a 

given potential, this additional charge will increase the surface charge density  

 

.  Since  the  potential  of  the  conductor  is  given  by      ,  the  



potential  of conductor will also increase maintaining the ratio  same   . 

Thus we can write   where the constant of proportionality C is called the 

capacitance of the isolated conductor. SI unit of 
 
Capacitance is Coulomb/ Volt also called Farad denoted by F.  It can be seen 

that if V=1,         C= Q. Thus capacity of an isolated conductor can also be 

defined as the amount of charge in Coulomb required to raise the potential of 

the conductor by 1 Volt. 

Of considerable interest in practice is a capacitor that consists of two (or 

more) conductors carrying equal and opposite charges and separated by some 

dielectric media or free space. The conductors may have arbitrary shapes. A 

two-conductor capacitor is shown in figure below. 
 
 
 
 

 
 
 
 
 
 
 
 
 

                     Fig. : Capacitance and Capacitors 
When a d-c voltage source is connected between the conductors, a charge 

transfer occurs which results into a positive charge on one conductor and 

negative charge on the other conductor. The conductors are equipotential 

surfaces and the field lines are perpendicular to the conductor surface. If V is 

the mean potential difference between the conductors, the capacitance is given 

by 

.  

 

Capacitance of a capacitor depends on the geometry of the conductor and the 

permittivity of the medium between them and does not depend on the charge or 

potential difference between conductors. The capacitance can be computed by 

assuming Q(at the same time -Q on the other conductor), first determining    

using Gauss’s theorem and then determining  . 

 We illustrate this procedure by taking the example of a parallel plate capacitor. 
 



Series and parallel Connection of capacitors 
 
Capacitors are connected in various manners in electrical circuits; series and 

parallel connections are the two basic ways of connecting capacitors. We 

compute the equivalent capacitance for such connections. 

Series Case: Series connection of two capacitors is shown in the figure 1. 

For this case we can write, 

 

 
 
 

 

Fig.: Series Connection of Capacitors 

 
 
 
 

Fig. 2: Parallel Connection of Capacitors 
 
The same approach may be extended to more than two capacitors 

connected in series. Parallel Case: For the parallel case, the voltages 

across the capacitors are the same. The total charge  



 

Therefore,                                                                            

 
  
B. Coaxial Capacitor 
 
This is essentially a coaxial cable or coaxial cylindrical capacitor. Consider 

length L of two coaxial conductors of inner radius a and outer radius b (b > a) 
as shown in Figure. Let the space between the conductors be filled with a 

homogeneous dielectric with permittivitys. We assume that conductors 1 and 
2, respectively, carry +Q and -Q uniformly distributed on them. By applying 
Gauss's law to an arbitrary Gaussian cylindrical surface of radius            p (a < 
p < b), we obtain 

 
                        Figure : Coaxial capacitor. 

                

Hence 

                 

Thus the capacitance of a coaxial cylinder is given by 

                            

C. Spherical Capacitor: 
This is the case of two concentric spherical conductors. Consider the inner 

sphere of radius 



a and outer sphere of radius b{b> a) separated by a dielectric medium with 
permittivity as shown in Figure. We assume charges +Q and -Q on the inner 

and outer spheres 

                             Figure: Spherical capacitor 

respectively. By applying Gauss's law to an arbitrary Gaussian spherical 

surface of radius 

r(a<r<b), 

                                

that is  

                                   

Thus the capacitance of the spherical capacitor is 

                                 

POISSON'S AND LAPLACE'S EQUATIONS: 

Poisson's and Laplace's equations are easily derived from Gauss's law (for a 

linear material 
medium) 

 

And 

  

By above equations 

 



for an inhomogeneous medium. For a homogeneous medium, above equation 

becomes 

                                      

This is known as Poisson's equation. A special case of this equation occurs 
when pv = 0 

(i.e., for a charge-free region). 

Which is known as Laplace’s equation. 

Recall that the Laplacian operator  was derived.Thus Laplace's equation in 

Cartesian, cylindrical,or spherical coordinates respectively is given by 

                           

              

 

GENERAL PROCEDURE FOR SOLVING POISSON'S OR LAPLACE'S 
EQUATION: 
The following general procedure may be taken in solving a given boundary-

value problem 

involving Poisson's or Laplace's equation: 

 1. Solve Laplace's (if pv = 0) or Poisson's  equation using either  

(a) direct integration when V is a function of one variable, or  

(b) separation of variables if V is a function of more than one variable. The 

solution at this point is not unique but expressed in terms of unknown 

integration constants to be determined. 

2. Apply the boundary conditions to determine a unique solution for V. 

Imposing the 

given boundary conditions makes the solution unique. 

3. Having obtained V, find E using E = -ΔV and D from D = ƐE. 



4. If desired, find the charge Q induced on a conductor using Q = J ps dS where 

ps — Dn and Dn is the component of D normal to the conductor. If necessary, 

the capacitance between two conductors can be found using C = Q/V. 

Solving Laplace's (or Poisson's) equation, as in step 1, is not always as 

complicated as it may seem. In some cases, the solution may be obtained by 

mere inspection of the problem. Also a solution may be checked by going 

backward and finding out if it satisfies both Laplace's (or Poisson's) equation 

and the prescribed boundary conditions. 

EXAMPLE 
Current-carrying components in high-voltage power equipment must be cooled 

to carry away the heat caused by ohmic losses. A means of pumping is based 

on the force transmitted to the cooling fluid by charges in an electric field. The 

electro hydrodynamic (EHD) pumping is modeled in Figure, The region between 

the electrodes contains a uniform charge p0, which is generated at the left 

electrode and collected at the right electrode. Calculate the pressure of the 

pump if po = 25 mC/m3 and Vo = 22 kV. 

 
Solution: 

We apply Poisson's equation 

                                           

The boundary conditions V(z = 0) = Vo and V(z = d) = 0 show that V depends 
only on z 
(there is no p or <j> dependence). Hence 

                            

Integrating once gives 

                                

Integrating again yields 



                             

 
Figure: An electrohydrodynamic pump where A and B are integration 
constants to be determined by applying the boundary conditions. 

 
When z = 0, V = Vo, 

                                    
When z = d, V = 0, 

   or                                     

                                        
The electric field is given by 
 

                            
The net force is 

                         
                                
The force per unit area or pressure is 

 

                 
 



Unit – 4 

 

Objectives: 

➢ To introduce the concepts of magnetic fields, potential and force on different elements in 

magnetic field. 

Syllabus: 

UNIT – IV: Magnetostatics-I 

Biot-Savart’s Law, Ampere’s Circuital Law-Applications of Ampere’s Circuital Law : 

Infinite Line Current, Infinite Sheet of Current, Magnetic Flux and Magnetic Flux Density, 

Magnetic Scalar and Vector Potentials, Force on a moving charge- Lorentz Force Equation, 

Force on a current element. 

 

Outcomes: 

Students will be able  

➢ Understand the Biot-Savart law, Ampere’s law and stokes theorem. 

➢ Calculate the magnetic field intensity at different currents. 

➢ Understand the magnetic field and magnetic flux density. 

➢ Measure the force on different elements. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Biot-Savart’s Law 

The magnetic field intensity dH produced at a point P, by the differential current clement 

I dl is proportional to the product I dl and the sine of the angle α between the clement and the 

line joining P to the element and is inversely proportional to the square of the distance R between 

P and the element. 

 

 

 
From the cross product 

 
We can use the right-handed screw rule to determine the direction of dH: with the screw placed 

along the wire and pointed in the direction of current flow, the direction of advance of the screw 

is the direction of dH as in Figure 

 
Determining the direction of dH using  

(a) the right-hand rule, or (b) the right-handed screw rule. 

It is customary to represent the direction of the magnetic field intensity H (or current /) by a 

small circle with a dot or cross sign depending on whether H (or I) is out of, or into. 

 
If we define K as the surface current density (in amperes/meter) and J as the volume current 

density (in amperes/meter square), the source elements are related as 

 
Thus in terms of the distributed current sources, the Biot-Savart law as becomes 

 



 
Ampere's circuit law states that the line integral of the tangential component of H around a 

dosed path is the same as the net current Ienc enclosed by the path. 

 
Ampere's law is similar to Gauss's law and it is easily applied to determine H when the 

current distribution is symmetrical. 

By applying Stoke's theorem to the left-hand side 

 

 

 
Applications of Ampere's Law 

We now apply Ampere's circuit law to determine H for some symmetrical current 

distributions as we did for Gauss's law.  

Infinite Line Current 

Consider an infinitely long filamentary current I along the z-axis. To determine H at an 

observation point P, we allow a closed path pass through P. This path, on which Ampere's law is 

to be applied, is known as an Amperian path (analogous to the term Gaussian surface). 

 

                               
Infinite Sheet of Current 

Consider an infinite current sheet in the z = 0 plane. If the sheet has a uniform current density K 

= Kyay A/m 

 



 

 
Where an is a unit normal vector directed from the current sheet to the point of interest. 

 

Infinitely Long Coaxial Transmission Line 

 
 

 
The curl of A is an axial (or rotational) vector whose magnitude is the maximum circulation of 

A per unit area as the area lends to zero and whose direction is the normal direction of the area 

when the area is oriented so as to make the circulation maximum. 

 
Stokes's theorem suites that the circulation of a vector field A around a (closed) pain L is equal 

to the surface integral of  the curl of A over the open surface S bounded by L provided that A and 

 are continuous on .V 

 

 

Consider an infinitely long transmission line 

consisting of two concentric cylinders having 

their axes along the z-axis. The inner conductor 

has radius a and carries current I while the outer 

conductor has inner radius b and thickness t and 

carries return current -I . We want to determine 

H everywhere assuming that current is uniformly 

distributed in both conductors. 
 



  
Magnetic Flux Density 

The magnetic flux density B is similar to the electric flux density D. As D = µoE in free space, 

the magnetic flux density B is related to the magnetic field intensity H according to 

 
Where µo is a constant known as the permeability of free space. The constant is in henrys/meter 

(H/m) and has the value of 

 
The magnetic flux through a surface S is given by 

          
An isolated magnetic charge does not exist. Thus the total flux through a closed surface in a 

magnetic field must be zero. 

                     
By divergence theorem 

 

 
This equation is the fourth Maxwell's equation to be derived 

 
Magnetic Scalar and Vector Potentials 

Recall that some electrostatic field problems were simplified by relating the electric potential V 

to the electric field intensity E (E = — VV). Similarly, we can define a potential associated with 

magnetostatic field B. In fact, the magnetic potential could be scalar Vm or vector A. To define 

Vm and A involves recalling two important identities 

 
We define the magnetic scalar potential Vm (in amperes) as related to H according to 



 

 
We can define the vector magnetic potential A (in Wb/m) such that 

      

      

 
Forces due to Magnetic Fields 

The force can be (a) due to a moving charged particle in a B field, (b) on a current element in an 

external B field, or (c) between two current elements. 

Force on a Charged Particle 

A magnetic field can exert force only on a moving charge. From experiments, it is found that the 

magnetic force Fm experienced by a charge Q moving with a velocity u in a magnetic field B is 

 
This clearly shows that Fm is perpendicular to both u and B. 

For a moving charge Q in the presence of both electric and magnetic fields, the total force on the 

charge is given by 

 

 
This is known as the Lorentz force equation. It relates mechanical force to electrical force. If the 

mass of the charged particle moving in E and B fields is m, by Newton's second law of motion. 

 
Force on a Current Element 

To determine the force on a current element / dl of a current-carrying conductor due to the 

magnetic field B, ``                                      

 

 
This shows that an elemental charge dQ moving with velocity u (thereby producing convection 

current element dQ u) is equivalent to a conduction current element Idl. Thus the force on a 

current element Idl in a magnetic field B 

 
If the current / is through a closed path L or circuit, the force on the circuit is given by 

 



 
The magnetic field B is defined as the force per unit current element. 

Force between Two Current Elements 

 

 
Let us now consider the force between two elements I1 dl1 and I2 dl2 According to Biot-Savart's 

law, both current elements produce magnetic fields. So we may find the force d(df) on element I1 

dl1 due to the field dB2 produced by element I2 dl2. 

 

 

 
We obtain the total force F, on current loop 1 due to current loop 2 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



Unit – 5 

 

Objectives: 

➢ To introduce the concepts of time varying fields and Maxwell’s equations  

Syllabus: 

UNIT – V: Magnetostatics-II 

Magnetic Dipole and Dipole Moment, Magnetic boundary conditions, Magnetic Energy. 

 

Time Varying Fields and Maxwell’s Equations: Faraday’s law, Transformer EMF and 

Motional EMF, Inconsistency of Ampere’s Law, Displacement current, Maxwell’s equations, 

Time Harmonic Fields, Maxwell’s Equations using Phasor Notation. 

 

Electromagnetic waves-I: Wave Equations for Perfect Dielectrics and Conducting medium, 

Uniform plane wave propagation, Uniform Plane waves, Relation between E and H in a uniform 

Plane Wave. 

 

Outcomes: 

 

Students will be able  

➢ Derive the magnetic boundary conditions at different interfaces  

➢ Understand concepts of time varying fields 

➢ Understand the physical significance of the Maxwell’s equations 

➢ Learn how the propagation of EM waves in different media. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

TIME VARYING AND MAXWELL’S EQUATIONS: 

Faraday's Law: 

After Oersted's experimental discovery (upon which Biot-Savart and Ampere based their 

laws) that a steady current produces a magnetic field, it seemed logical to find out if magnetism 

would produce electricity. In 1831, about 11 years after Oersted's discovery, Michael Faraday in 

London and Joseph Henry in New York discovered that a time-varying magnetic field would 

produce an electric current. 

According to Faraday's experiments, a static magnetic field produces no current flow, 

but a time-varying field produces an induced voltage (called electromotive force or simply emf) 

in a closed circuit, which causes a flow of current. 

Faraday discovered that the induced emf. M (in volts), in any closed circuit is equal to 

the time rale of change of the magnetic flux linkage by the circuit. 

 

This is called Faraday's law, and it can be expressed as 

 

 
Where N is the number of turns in the circuit and V is the flux through each turn. The negative 

sign shows that the induced voltage acts in such a way as to oppose the flux producing it. 

 
Figure: A circuit showing emf-producing field and electrostatic field E. 

 

This is known as Lenz's law,2 and it emphasizes the fact that the direction of current flow 

in the circuit is such that the induced magnetic field produced by the induced current will oppose 

the original magnetic field. Recall that we described an electric field as one in which electric 

charges experience force. The electric fields considered so far are caused by electric charges; in 

such fields, the flux lines begin and end on the charges. However, there are other kinds of 

electric fields not directly caused by electric charges. These are emf-produced fields. Sources of 

emf include electric generators, batteries, thermocouples, fuel cells, and photovoltaic cells, which 

all convert nonelectrical energy into electrical energy. 

Consider the electric circuit of Figure, where the battery is a source of emf. The electrochemical 

action of the battery results in an emf-produced field Ey. Due to the accumulation of charge at 

the battery terminals, an electrostatic field Ee{ = — VV) also exists. 

 

The total electric field at any point is 



          E = Ey + Ee 

Note that Ey is zero outside the battery, Ey and Ee have opposite directions in the battery, 

and the direction of Ee inside the battery is opposite to that outside it. If we integrate eq. over the 

closed circuit, 

 
where § Ee • d\ = 0 because Ee is conservative. The emf of the battery is the line integral 

of the emf-produced field; that is, 

 
since Ey and Ee are equal but opposite within the battery. It may also be regarded as the potential 

difference (VP - VN) between the battery's open-circuit terminals. It is important to note that: 

1. An electrostatic field Ee cannot maintain a steady current in a closed circuit since  

$LEe-dl = 0  

2. An emf-produced field Eyis nonconservative. 

3. Except in electrostatics, voltage and potential difference are usually not equivalent. 

 

TRANSFORMER AND MOTIONAL EMFs 

Having considered the connection between emf and electric field, we may examine how 

Faraday's law links electric and magnetic fields. For a circuit with a single turn (N = 1), 

 
In terms of E and B, eq.  can be written as 

 
where P has been replaced by Js B • dS and S is the surface area of the circuit bounded by 

the closed path L. It is clear from eq. (9.5) that in a time-varying situation, both electric and 

magnetic fields are present and are interrelated. Note that d\ and JS in eq. (9.5) are in accordance 

with the right-hand rule as well as Stokes's theorem. This should be observed in above Figure . 

The variation of flux with time as in above equ may be caused in three ways: 

1. By having a stationary loop in a time-varying B field 

2. By having a time-varying loop area in a static B field 

3. By having a time-varying loop area in a time-varying B field. 

Each of these will be considered separately. 

Stationary Loop in Time-Varying B  transformer emf. 

 

This is the case portrayed in Figure above where a stationary conducting loop is in a timevarying 

magnetic B field. Equation  becomes 

 



 
Figure.Induced emf due to a stationary loop in a timevarying B field 

 

This emf induced by the time-varying current (producing the time-varying B field) in a stationary 

loop is often referred to as transformer emf in power analysis since it is due to transformer 

action. By applying Stokes's theorem to the middle term in below eq. we obtain 

 
For the two integrals to be equal, their integrands must be equal; that is, 

 
This is one of the Maxwell's equations for time-varying fields. It shows that the timevarying 

E field is not conservative (V X E = 0). This does not imply that the principles of energy 

conservation are violated. The work done in taking a charge about a closed path in a time varying 

electric field, for example, is due to the energy from the time-varying magnetic field. Observe 

that Figure below, obeys Lenz's law; the induced current / flows such as to produce a magnetic 

field that opposes B(f). 

 

Moving Loop in Static B Field (Motional emf) 

When a conducting loop is moving in a static B field, an emf is induced in the loop. We 

recall from  below eq, that the force on a charge moving with uniform velocity u in a magnetic 

field B is 

 
We define the motional electric field  Em as 

 
If we consider a conducting loop, moving with uniform velocity u as consisting of a large 

number of free electrons, the emf induced in the loop is 

 

 
 



This type of emf is called motional emf or flux-cutting emf because it is due to motional action. It 

is the kind of emf found in electrical machines such as motors, generators, and alternators. Figure 

below illustrates a two-pole dc machine with one armature coil and a twobar commutator. 

Although the analysis of the d.c. machine is beyond the scope of this text, we can see that 

voltage is generated as the coil rotates within the magnetic field. Another example of motional 

emf is illustrated in Figure below, where a rod is moving between a pair of rails. In this example, 

B and u are perpendicular. 

eq. becomes 

 
Inconsistency of Ampere’s Law and Displacement current: 

In the previous section, we have essentially reconsidered Maxwell's curl equation for 

electrostatic fields and modified it for time-varying situations to satisfy Faraday's law. We shall 

now reconsider Maxwell's curl equation for magnetic fields (Ampere's circuit law) for 

Time-varying conditions. 

For static EM fields, we recall that 

 

 
 

But the divergence of the curl of any vector field is identically zero . 

Hence, 

 
The continuity of current in eq, however, requires that 

 
that it becomes 

 
where id is to be determined and defined. Again, the divergence of the curl of any vector is 

zero. Hence: 

 
In order for eq. 

 

 
By above equations 

 



MAXWELL'S EQUATIONS IN FINAL FORMS: 

James Clerk Maxwell (1831-1879) is regarded as the founder of electromagnetic theory 

in its present form. Maxwell's celebrated work led to the discovery of electromagnetic waves. 

Through his theoretical efforts over about 5 years (when he was between 35 and 40), Maxwell 

published the first unified theory of electricity and magnetism. The theory comprised all 

previously known results, both experimental and theoretical, on electricity and magnetism. It 

further introduced displacement current and predicted the existence of electromagnetic waves. 

Maxwell's equations were not fully accepted by many scientists until they were later confirmed 

by Heinrich Rudolf Hertz (1857-1894), a German physics professor. Hertz was successful in 

generating and detecting radio waves. The laws of electromagnetism that Maxwell put together 

in the form of four equations were presented in Table below for static conditions. The more 

generalized forms of these equations are those for time-varying conditions shown in Table 9.1. 

We notice from the table that the divergence equations remain the same while the curl equations 

have been modified. The integral form of Maxwell's equations depicts the underlying physical 

laws, whereas the differential form is used more frequently in solving problems. For a field to be 

"qualified" as an electromagnetic field, it must satisfy all four Maxwell's equations. The 

importance of Maxwell's equations cannot be overemphasized because they summarize all 

known laws of electromagnetism. We shall often refer to them in the remaining part of this text. 

Since this section is meant to be a compendium of our discussion in this text, it is 

worthwhile to mention other equations that go hand in hand with Maxwell's equations. 

The Lorentz force equation 

 
Generalized Forms of Maxwell's Equations 

 
TIME-HARMONIC FIELDS: 

So far, our time dependence of EM fields has been arbitrary. To be specific, we shall 

assume that the fields are time harmonic. 

A time-harmonic field is one thai varies periodically or sinusoidally wiih time. Not only is 

sinusoidal analysis of practical value, it can be extended to most waveforms by Fourier transform 

techniques. Sinusoids are easily expressed in phasors, which are more convenient to work with. 



Before applying phasors to EM fields, it is worthwhile to have a brief review of the concept of 

phasor. 

A phasor z is a complex number that can be written as 

 
Herein lies the justification for using phasors; the time factor can be suppressed in our 

analysis of time-harmonic fields and inserted when necessary. Also note that in Table, the time 

factor e'01' has been assumed. It is equally possible to have assumed the time factor e~ja", in 

which case we would need to replace every y in Table with —j. 

 

 

TABLE:Time-Harmonic Maxwell's Equations 

 
Electromagnectic Waves-1:  

Our first application of Maxwell's equations will be in relation to electromagnetic wave 

propagation. The existence of EM waves, predicted by Maxwell's equations, was first 

investigated by Heinrich Hertz. After several calculations and experiments Hertz succeeded in 

generating and detecting radio waves, which are sometimes called Hertzian waves in his honor. 

In general, waves are means of transporting energy or information. 

Typical examples of EM waves include radio waves, TV signals, radar beams, and light rays. All 

forms of EM energy share three fundamental characteristics: they all travel at high velocity; in 

traveling, they assume the properties of waves; and they radiate outward from a source, without 

benefit of any discernible physical vehicles.  

 Our major goal is to solve Maxwell's equations and derive EM wave motion in the following 

media: 

 
Where w is the angular frequency of the wave. Case 3, for lossy dielectrics, is the most 

general case and will be considered first. Once this general case is solved, we simply derive other 

cases (1,2, and 4) from it as special cases by changing the values of a, e, and ix. However, before 

we consider wave motion in those different media, it is appropriate that we study the 



characteristics of waves in general. This is important for proper understanding of EM waves. 

Power considerations, reflection, and transmission between two different media will be discussed 

later. 

 

Uniform plane wave propagation: 

A clear understanding of EM wave propagation depends on a grasp of what waves are in 

general. A wave is a function of both space and time. Wave motion occurs when a disturbance at 

point A, at time to, is related to what happens at point B, at time t > t0. Partial differential 

equation of the second order. In one dimension, a scalar wave equation takes the form of 

 
where u is the wave velocity.  

It can be solved by following procedure. Its solutions are of the form 

 
For the moment, let us consider the solution in above eq. Taking the imaginary part 

of this equation, we have 

 

 
This is a sine wave chosen for simplicity; a cosine wave would have resulted had we taken 

the real part of above eq.  

1. It is time harmonic because we assumed time dependence ejo" . 

2. A is called the amplitude of the wave and has the same units as E. 

3. (ox - /3z) is the phase (in radians) of the wave; it depends on time t and space variable z. 

4. w is the angular frequency (in radians/second); 0 is the phase constant or wave number (in 

radians/meter). 

Due to the variation of E with both time t and space variable z, we may plot £ as a 

function of t by keeping z constant and vice versa. The plots of E(z, t = constant) and E(t, z = 

constant) are shown in Figure 10.1(a) and (b), respectively. From Figure 10.1(a), we observe that 

the wave takes distance X to repeat itself and hence X is called the wavelength (in meters). From 

Figure , the wave takes time T to repeat itself; consequently T is known as the period (in 

seconds). Since it takes time T for the wave to travel distance X at the speed u, we expect 

X = uT 

But T = l/f, where/is the frequency (the number of cycles per second) of the wave in 

Hertz (Hz). Hence, Because of this fixed relationship between wavelength and frequency, one 

can identify the position of a radio station within its band by either the frequency or the 

wavelength. Usually the frequency is preferred. Also, because 

 



 

 

Plot of E(z, t)(b) with constant z. 

(b) 

• A sin(co/ - &z): (a) with constant t 

 

Equation shows that for every wavelength of distance traveled, a wave undergoes a phase change 

of 2TT radians.We will now show that the wave represented by eq. is traveling with a velocity u 

in the +z direction. To do this, we consider a fixed point P on the wave,as the wave advances 

with time, point P moves along +z direction. Point P is a point of constant phase, therefore 

 

 
 

 
which is the same as eq shows that the wave travels with velocity u in the +z direction. Similarly, 

it can be shown that the wave B sin (cos + (5z) in eq. is traveling with velocity u in the — z 

direction. 

In summary, we note the following: 

1. A wave is a function of both time and space. 

2. Though time / = 0 is arbitrarily selected as a reference for the wave, a wave is without 

beginning or end. 

3. A negative sign in (u>t ± /3z) is associated with a wave propagating in the +z direction 

(forward travelling or positive-going wave) whereas a positive sign indicates that a wave is 

travelling in the —z direction (backward travelling or negative going wave). 

 

 



Unit – 6 

 

Objectives: 

➢ To introduce the concepts of wave propagation and refraction of electromagnetic waves 

in different media. 

Syllabus: 

UNIT – VI: Electromagnetic Waves-II 

Wave Propagation in lossless medium and conducting medium, Conductors and Dielectrics-

Characterization. Polarization, Direction Cosines of normal to the plane of wave. Reflection and 

Refraction of Plane Waves – Normal and Oblique Incidences for Perfect Conductor and Perfect 

Dielectrics- Horizontal and Vertical Polarization, Poynting’s theorem and Poynting’s Vector. 

Outcomes: 

Students will be able  

➢ Understand concept of wave propagation in different media. 

➢ Reflection and refraction of plane waves. 

➢ Understand the concept of polarization. 

➢ Measure the power flowing through the given volume. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Our first application of Maxwell's equations will be in relation to electromagnetic wave 

propagation. The existence of EM waves, predicted by Maxwell's equations, was first 

investigated by Heinrich Hertz. In general, waves are means of transporting energy or 

information. Typical examples of EM waves include radio waves, TV signals, radar beams, and 

light rays. All forms of EM energy share three fundamental characteristics: they all travel at high 

velocity; in traveling, they assume the properties of waves; and they radiate outward 

from a source, without benefit of any discernible physical vehicles 

WAVE PROPAGATION IN LOSSY DIELECTRICS: 

wave propagation in lossy dielectrics is a general case from which wave propagation in 

other types of media can be derived as special cases. Therefore, this section is foundational to the 

next three sections 

 

A lossy dielectric is a medium in which an EM wave loses power as it propagates due to poor 

conduction. 

In other words, a lossy dielectric is a partially conducting medium (imperfect dielectric or 

imperfect conductor) with a ¥= 0, as distinct from a lossless dielectric (perfect or good 

dielectric) in which a = 0. Consider a linear, isotropic, homogeneous, lossy dielectric medium 

that is charge free (pv = 0). Assuming and suppressing the time factor ej"', Maxwell's equations 

 



 

and y is called the propagation constant (in per meter) of the medium. By a similar procedure, it 

can be shown that for the H field, 

                                         

The above Equations  are known as homogeneous vector Helmholtz 's equations or simply vector 

wave equations. 

 
 We obtain a and beeta from eqs 

 

 

 

 
A sketch of |E| at times t = 0 and t = At is portrayed , where it is evident that E has only an x-

component and it is traveling along the +z-direction. Having obtained E(z, t), we obtain H(z, t) 

either by taking similar steps to solve  or by using eq.  in conjunction with Maxwell's equations , 

We will eventually arrive at 

 

And eeta is a complex quantity known as the intrinsic impedance (in ohms) of the medium. It 

can be shown by following the steps taken in  



 
 

E and H are out of phase by 0, at any instant of time due to the complex intrinsic impedance of 

the medium. Thus at any time, E leads H (or H lags E) by 6V. Finally, we notice that the ratio of 

the magnitude of the conduction current density J to that of the displacement current density Jd 

in a lossy medium is 

 

PLANE WAVES IN LOSSLESS DIELECTRICS: 

In a lossless dielectric, a <$C we. It is a special case of that 

 

Substituting these in general case. 

 

PLANE WAVES IN FREE SPACE: 

 

This may also be regarded as a special case, Thus we simply replace e by eo and \k by /xo in eq  

Either way, we obtain 



 

 

where c =3 X 108 m/s, the speed of light in a vacuum. The fact that EM wave travels in free 

space at the speed of light is significant. It shows that light is the manifestation of an EM wave. 

In other words, light is characteristically electromagnetic. 

By substituting the constitutive parameters dv = 0 and V = ^oi where rjo is called the intrinsic 

impedance of free space and is given by 

 

PLANE WAVES IN GOOD CONDUCTORS: 

This is another special case of that considered , A perfect, or good conductor, 

 

Hence the charecteristics 

 

Skin depth: 

Therefore, as E (or H) wave travels in a conducting medium, its amplitude is attenuated by 

the factor e~az. The distance <5, through which the wave amplitude decreases by a factor e~l 

(about 37%) is called skin depth or penetration depth of the medium; that is, 

or 



 

The skin depth is a measure of the depth to which an EM wave can penetrate the Medium. 

 

Normal and oblique Incidence: 

Incident Wave: 

(E,, H,) is traveling along +az in medium 1. If we suppress the time factor ejᾠt and 

assume that 

 
Reflected Wave: (Er, Hr) is traveling along +az in medium 1. If Ers(z) = Er0eγzax 

 
 

 
Fig.:A Plane wave Incident normally on an Interface between two different media  

Transmitted Wave: 

(Et, Ht) is traveling along +az in medium 2. If 

 

 
Then reflection coefficient 



 
And  

 
By solving the electric component of the wave is 

 
Similarly the magnetic field component of the wave is 

 
 

REFLECTION OF A PLANE WAVE AT OBLIQUE INCIDENCE: 

 
Fig.:Oblique Incidence of a plane wave 

 

 

 



Fig.: Oblique incidence with E parallel to the plane of incidence. 

 
 

 
The above equations are  called the Fresnel Equations. 

Brewsters Angle: 

 
 

Perpendicular Polarization: 

E field is perpendicular to the plane of Incidence. 

 

 

 
 

While the transmitted field inmedium 2 is given by 

 
Then on solving 

 

 
 



 
Fig.:Oblique incidence with E perpendicular to the plane of incidence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



POWER AND THE POYNTING VECTOR: 

Energy can be transmitted from one point to another point by means of EM 

Waves. The rate of such energy transportation can be obtained from Maxwell’s 

equations 

 
 

 

 
 

The above equation is referred to as Poynting theorem . The pointing vector is denoted by  

 
 

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 


